Relationships and their
representation in a class
diagram. Inheritance of
class attributes and

operations.

Introduction

Building confidence
Engaging the audience
Visual aids

Final tips & takeaways

Class diagram

A class diagram in the Unitied Modeling Language
(UML) is a type of static structure diagram that describes
the structure of a system by showing the system'’s:

» classes,
* their attributes, r 3 r
Team Player
* operations (or methods),
+name: string +name: string
. . . +city: string +position: string
* and the relationships among objects. +division: string O +jerseyNumber:int
+playGame() +playGame()
+hireCoach() +train()

Class diagrams offer several benefits for any
organization. Use UML class diagrams to:

lllustrate data models for information systems, no matter how simple or
complex.

Better understand the general overview of the schematics of an
application.

Visually express any specific needs of a system and disseminate that
information throughout the business.

Create detailed charts that highlight any specific code needed to be
programmed and implemented to the described structure.

Provide an implementation-independent description of types used in a
system that are later passed between its components.

Class

A Class is a blueprint for an object. Objects and classes go hand in
hand. We can't talk about one without talking about the other.
And the entire point of Object-Oriented Design is not about
objects, it's about classes, because we use classes to create

objects. So, a class describes what an object will be, but itisn't the
object itself.

In fact, classes describe the type of objects, while objects are
usable instances of classes. Each Object was built from the same
set of blueprints and therefore contains the same components
(properties and methods). The standard meaning is that an object

is an instance of a class and object - Objects have states and
behaviors.

Properties
Color

Eye Color
Height
Length
Weight

Methods
Sit

Lay Down
Shake

Come

Create instance

Example

Bobby

Property Values
Color: Yellow

Eve Color: Brown
Height: 17 in
Length: 35 in
Weight: 24 pounds

Methods
Sit

Lay Down
Shake

Come

Basic components of a class diagram

» Upper section: Contains the name of the class. This section is always
required, whether you are talking about the classifier or an object.

« Middle section: Contains the attributes of the class. Use this section to
describe the qualities of the class. This is only required when describing a
specific instance of a class.

« Bottom section: Includes class operations (methods). Displayed in list
format, each operation takes up its own line. The operations describe

how a class interacts with data.

Shape Shape
-length -length : int
+getlLength() +getLength{} : int
+zetlength() +zetlengthin : int) : void

Class without signature Class signature

Class Operations (Methods):

* The return type of a method is shown after the colon at the end of the
method signature.

* The return type of method parameters are shown after the colon
following the parameter name. Operations map onto class methods in

code

MyClas sNama
+attribute @ int
My ClassHame has 3 atinbuies
and 3 operations -attributeZ : float
#Hattributed : Circle
+0p1{in p1 : boolean, in p2): Sting
-op2(inout p3 : int): fleat ® == = — opdretumsa float

#Fop3out pﬂ: Classh®™ #= == == == opdretums o pointer
i [dencoted by a *] to Classé

Farameter o3 of op2 iz of fype int

Class Visibility

* + denotes public attributes or operations
* - denotes private attributes or operations
« # denotes protected attributes or operations

Relationships

between classes

Associalion

Inheritance

Realization

Dependency

Aggregation

Composition

Associations

* An association represents a bi-directional relationship between two
classes. It indicates that instances of one class are connected to instances

of another class.

* They are represented by a solid line between classes. Associations are

typically named using a verb or verb phrase which reflects the real-world
problem domain. Associations are always assumed to be bi-directional;

this means that both classes are aware of each other and their

relationship, unless you qualify the association as some other type.

Flight

flighthumber : Integer
departureTime : Date
fightDuration : Minutes
departingAirport : String
arrivingAirport : String

0.°

assignedflane

Plane

delayFlight (numberOfMinutes : Minutes)
getarrivalTime () : Date

assignedFlights

0.1

arPlanaType : String
maximumSpead : MPH
maximumDistance : Miles
tailld : String

Uni-directional association

* In a uni-directional association, two classes are related, but only one class
knows that the relationship exists.

OverdrawnAccountsReport BankAccount
overdrawnaccounts

generatedOn : Date
refresh ()

7| owner : String
0..* |balance : Dollars

deposit (amount : Dollars)
withdrawal (amount : Dollars)

Cardinality

Cardinality is expressed in
terms of:

° onetoone
° one to many

° many to many

0.1

[ordered)

Exactly one

lero or one

lero or more

1 or more

Ordered

Inheritance

 Refers to the ability of one class (child class) to inherit the identical
functionality of another class (super class), and then add new functionality
of its own. (In a non-technical sense, imagine that | inherited my mother's
general musical abilities, but in my family I'm the only one who plays
electric guitar.) To model inheritance on a class diagram, a solid line is
drawn from the child class (the class inheriting the behavior) with a
closed, unfilled arrowhead (or triangle) pointing to the super class.

Aggregation

* [t represents a "part of" relationship.
 Class? is part of Class1.

* Many instances (denoted by the *) of Class2 can be associated with
Class1.

* Objects of Class1 and Class2 have separate lifetimes.

« Aggregation is represented by a diamond shape on the side of the whole
class. In this kind of relationship, the child class can exist independently of
its parent class.

Composition

A special type of aggregation where parts are destroyed when the whole is
destroyed.

« Objects of Class2 live and die with Class1.
 Class2 cannot stand by itself.

The relationship is displayed as a solid line with a filled diamond at the
association end, which is connected to the class that represents the whole

or composite.
OQe— 10O

Class Class?

Dependency

An object of one class might use an object of another class in the code of a
method. If the object is not stored in any field, then this is modeled as a
dependency relationship.

« A special type of association.

* Exists between two classes if changes to the definition of one may cause
changes to the other (but not the other way around).

 Class1 depends on Class?

Parson Book
+haszRead({book) : boolean il

Realization

 Realization is a relationship between the blueprint class and the object
containing its respective implementation level details. This object is said
to realize the blueprint class. In other words, you can understand this as
the relationship between the interface and the implementing class.

<4 |nterfacas=
Owner
+acquine (property)
+dispose(property}
£ TN
1 1
i L]
i §
[} i
] L]
] L]
i i
Person Corporation
=rgal =current
-tangible =fced
-intengible -longTerm
-intangible

Brita Tamm
502-555-0152
brita@firstupconsultants.com

www.firstupconsultants.com

	Slide 1: Relationships and their representation in a class diagram. Inheritance of class attributes and operations.
	Slide 2: Agenda
	Slide 3: Class diagram
	Slide 4: Class diagrams offer several benefits for any organization. Use UML class diagrams to:
	Slide 5: Class
	Slide 6
	Slide 7: Basic components of a class diagram
	Slide 8: Class Operations (Methods):
	Slide 9: Class Visibility
	Slide 10: Relationships between classes
	Slide 11: Associations
	Slide 12: Uni-directional association
	Slide 13: Cardinality
	Slide 14: Inheritance
	Slide 15: Aggregation
	Slide 16: Composition
	Slide 17: Dependency
	Slide 18: Realization
	Slide 19: Thank you

